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In-Silico Approaches to Multi-target Drug Discovery

Computer Aided Multi-target Drug Design, Multi-target Virtual Screening
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Abstract. Multi-target drugs against selective multiple targets improve therapeutic efficacy, safety and
resistance profiles by collective regulations of a primary therapeutic target together with compensatory
elements and resistance activities. Efforts have been made to employ in-silico methods for facilitating the
search and design of selective multi-target agents. These methods have shown promising potential in
facilitating drug discovery directed at selective multiple targets.
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MULTI-TARGET THERAPEUTICS

Therapeutic agents directed at an individual target
frequently show reduced efficacies, undesired safety profiles
and drug resistances due to network robustness (1), redun-
dancy (2), crosstalk (3), compensatory and neutralizing
actions (4), anti-target and counter-target activities (5), and
on-target and off-target toxicities (6). Multi-target agents
directed at selected multiple targets have been increasingly
explored (1,7) for achieving enhanced therapeutic efficacies,
improved safety profiles, and reduced resistance activities by
simultaneously modulating the activity of a primary thera-
peutic target and the counteractive elements and resistance
activities (8) while limiting unwanted cross-reactivities via
optimization of target selectivity (9).

Examples of clinically successful multi-target drugs are
anticancer kinase inhibitors sunitinib against PDGFR and
VEGFR, dasatinib against Abl and Src, and lapatinib against
EGFR and HER2 (10,11). These multi-target anticancer
agents inhibit a primary therapeutic target that promotes
tumor growth in a specific cancer patient group and block the
alternative signalling or escape mechanism (4,12,13). Fig. 1
illustrates an example of alternative signalling in response to
EGFR inhibition. EGFR inhibition in some cases leads to

enhanced HER2-HER4 and HER2-HER3 heterodimeriza-
tion to alternatively activate MAPK and AKT signalling for
promoting proliferation and survival independent of EGFR
(14). This alternative signalling route cannot be blocked by an
EGFR inhibitor alone, but may be blocked by an EGFR-
HER2 dual-inhibitor such as lapatinib.

Multi-target antidepressant drugs achieve enhanced
efficacies by at least two mechanisms. One mechanism,
represented by clomipramine, duloxetine and imipramine,
involves inhibition of multiple monoamine reuptakes (15).
Simultaneous blockade of complementary monoamine reup-
take routes synergistically enhances the overall therapeutic
efficacy (16). Monoamines in CNS are reduced via mono-
amine reuptake (17) and COMT- and MAO-mediated
catabolism (18). Inhibition of one mechanism may elevate
the compensatory activity of another. For instance, COMT
inhibition shifts levodopa metabolism toward the MAO-B-
dependent oxidative pathway (19). Therefore, inhibition of one
monoamine reduction route is complemented by the inhibition
of the other routes to reduce their compensatory activities,
which leads to therapeutic synergy. The second mechanism
involves collective monoamine reuptake inhibition and recep-
tor antagonism. For instance, A-80426 both inhibits serotonin
reuptake and antagonizes α2-adrenoceptor (20). Blockade of
α2-adrenoceptor leads to increased serotonin levels (21) to
complement the inhibition of serotonin reuptakes, which is a
typical mode of synergistic therapeutic action (22).

Table I summarises 17 multi-target drugs approved or in
advanced development stages together with information about
their targeted diseases, potencies against individual targets and
cell-lines, and multi-target mode of action. These drugs target
members of the same protein family that regulate the same
signalling process at different upstream points, act as alternative
signalling molecules, or complement each other in conducting
similar functions. The potencies of these drugs against the
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corresponding multiple targets are mostly in the 1 nM–700 nM
range. Multi-target agents directed at proteins of different
families have also been reported. Examples are Curoumin
against HIV integrase (30 μM) and Tat (<30 μM) and Suramin
against HIV gp120 (7.7 μM), integrase (2.4 μM), and reverse
transcriptase (1.4 μM) (23). But these are yet to reach advanced
development stages. The clinical success of multi-target drugs
seems to be partly linked to the ability to achieve high potencies
against all of the selectedmultiple targets. It is possible thatmost
of the multi-target drugs approved or in advanced development
stages target members of the same protein family partly because
it is relatively easier to design, search and optimize agents of
high potencies against multiple proteins of the same family than
against proteins of different families.

Two multi-target drugs show better potency against
specific cell-lines than against their intended multiple targets.
These are JNJ-7925476 against hSERT (0.9 nM), hNET
(16 nM), and hDAT (5 nM) (24,25), and CHIR-265/RAF-
265 against VEGFR2 (1.3 μM) and BRAF (1.2 μM)(26). A
recent study has shown that VEGFR2 recruits and activates
c-Src (27); c-Src subsequently associates directly with BRAF
and regulates activation of CRAF in some cells to activate
MAPK pathway in a Ras-independent manner (28,29).
Therefore, VEGFR2-BRAF dual-inhibitors, such as CHIR-
265/RAF-265, are expected to show enhanced activity against
cell-lines of sufficiently expressed c-Src by partly blocking this
Ras-independent signalling route. Moreover, five drugs show
comparable potency against specific cell-line(s) with respect to
the potencies against their intended multiple targets (less than
ten fold difference). These include ABT-869 against VEGFR2
(8.1 nM), FLT3 (0.63 nM), and CSF1R (3.4 nM), AMG-706
against VEGFR (2:26 nM), FLT1 (12 nM), FLT4 (9.7 nM), and

KIT (3.7 nM), AST-487 against FLT3 (0.79 nM) and KIT
(5.4 nM), Dasatinib against ABL1 (0.53 nM) and Src
(0.21 nM), and GW-786034 against VEGFR2 (14 nM), FLT1
(14 nM), FLT4 (27 nM)(26). The therapeutic efficacy of ABL-
SRC dual-inhibitor dasatinib is partly due to its additional
capability in inhibiting Src-mediated BCR-ABL—independent
pathways that are active in imatinib resistant patients (30).
FLT1 is frequently co-expressed with VEGFR2 and plays key
roles in survival (31,32).

IN-SILICO METHODS FOR SEARCHING
AND DESIGNING MULTI-TARGET DRUGS

In-silico methods have been widely explored for facilitat-
ing lead discovery against individual targets (33,34). In
particular, molecular docking (35), pharmacophore (36),
structure-activity relationship (SAR) and quantitative struc-
ture activity relationship (QSAR) (37), machine learning
(38), and combination methods (39) have been extensively
used for searching and designing active compounds against
individual targets. Some of these methods have recently been
explored for searching and designing multi-target agents.
Figs. 2, 3, 4, and 5 outline the strategies of using molecular
docking, combined molecular docking and pharmacophore,
framework combination, and fragment-based approaches for
multi-target drug discovery using dual-inhibitor discovery as
examples. These methods are classified into combinatorial
approaches and fragment–based approaches. Combinatorial
approaches (Figs. 2 and 3) straightforwardly conduct parallel
searches against each individual target to find virtual hits that
simultaneously interact with multiple targets. Combinatorial
approaches are practically useful if the retrieval rates against

Fig. 1. One of the alternative signalling paths in response to EGFR inhibition. EGFR inhibition may lead to
the activation of alternative HER receptors via EGFR-HER2, EGFR-HER3, EGFR-HER4, HER2-HER4,
and HER2-HER3 heterodimerization. EGFR inhibitors can only block the first four (pink background),
while proliferation and survival signalling can still proceed via the last two (blue background). The use of an
EGFR-HER2 dual inhibitor, such as Laptinib, blocks both EGFR and this alternative path.
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Fig. 2. Molecular docking strategy for multi-target inhibitor discovery.

Fig. 3. Combined pharmacophore and molecular docking strategy of multi-target inhibitor
discovery.
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individual targets are sufficiently high and the false-hit rates
are sufficiently low. High retrieval rates compensate for the
reduced collective retrieval rates (if the retrieval rate against
individual target is 50∼70%, the collective retrieval rate for
multi-target agents against two targets may be statistically
reduced to 25∼49%). Low false-hit rates are needed for high
enrichment in searching multi-target agents that are signifi-
cantly fewer in numbers and more sparsely distributed in the
chemical space than agents against an individual target.

Molecular docking is a widely used virtual screening
method that uses geometrical matching to dock small mole-
cules to the target site 3D structure followed by the analysis of
binding feasibility by consideration of chemical complementary
and molecular interaction energies (35). This method does not
require knowledge about known active compounds and their
structural features or frameworks, but in some cases may have
limited capability on account of target structural flexibility and
specific chemical features of drug binding. To improve virtual
screening performance, molecular dynamics-enhanced molec-
ular docking method has been used in virtual screening against
the individual targets in HIV and its associated opportunistic
pathogens to find multi-target agents, such as KNI-764, that
inhibit both HIV-1 protease and malarial plasmepsin II enzyme
(40). Molecular docking and pharmacophore matching meth-
ods have been used for identifying dual-inhibitors of two anti-
inflammatory targets, PLA2 and LTA4H-h, in the arachidonic
acid metabolic network (41).

Fragment-based approaches (Figs. 4 and 5) combine
multiple elements of structural frameworks or multiple frag-
ments that bind to each individual target to design compounds
that bind to multiple targets, which have been introduced as
tools for the design of multi-target agents (42). In one approach,
the structure-activity relationships against individual targets are
analyzed to find molecular fragments and essential binding
features which are either combined or incorporated into active
agents against selected multiple targets (42). Fragment combi-
nation often results in larger and more complex non-drug-like

molecules. Drug-like features may be retained if the degree of
framework overlap is maximized and the size of the selected
fragments is minimized. In another approach, molecular frag-
ment libraries are searched to find the fragments with certain
levels of activity against selected multiple targets, and the
identified fragments are further optimized into more potent,
bigger-sized multi-target active agents (42). Optimizing frag-
ments with weak multiple activities into potent multi-target,
drug-like agents can be more easily achieved for targets sharing
a conserved binding site (43). As binding sites become more
dissimilar, it is increasingly difficult to improve and adequately
balance the high binding affinities needed to achieve acceptable
in-vivo efficacy and safety. One way to reduce this difficulty is to
explore synergistic targets, such that multi-target agents with
modest activity at one or more of the relevant targets may still
produce similar or better in-vivo effects compared with higher-
affinity, target-selective compounds (22).

Moreover, multi-target QSAR models for identification
of multi-target agents (44) and active agents against multiple
bacterial (45), fungal (46,47) and viral (45) species have been
developed by incorporating multi-target or species variations of
binding-site features into the multi-target dependent molecular
descriptors or species-dependent molecular descriptors, and
stochastic Markov drug-binding process models. These multi-
target QSAR models achieve high retrieval rates of 72∼85%
and moderately low false-hit rates of 15∼28%. Development of
multi-target QSAR models may be limited by the inadequate
number of drug data for some of the targets or species.
Moreover, the molecular size of the testing drugs needs to be
in a certain range for accurate computation of multi-target-
dependent or species-dependent molecular descriptors, which
in some cases may also affect one’s capability for developing
multi-target QSAR models (47).

Fig. 4. Illustration of framework combination approach to multi-
target drug discovery.

Fig. 5. Illustration of fragment-based approach to multi-target drug
discovery.
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Fig. 6. Illustration of training a support vector machine virtual screening model and using
it for searching inhibitors of an individual target.

Fig. 7. Illustration of using support vectormachinesmethod for searchingmulti-target inhibitors.
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VIRTUAL SCREENING PERFORMANCE
FOR SEARCHING MULTI-TARGET AGENTS
FROM LARGE COMPOUND LIBRARIES

The capability of virtual screening methods in searching
active compounds against individual targets from large
compound libraries has been extensively evaluated (48), but
their capability for searching multi-target agents from large
compound libraries has not been tested. Nonetheless, some of
the virtual screening methods can be readily evaluated by
large library screening tests. We specifically evaluated one
virtual screening method, support vector machines (SVMs),
for its performance in searching dual-inhibitors of specific
kinase pairs from large libraries of 13.56 M compounds in
PubChem database and 168 K active agents from MDDR
database. SVMs of each of the six individual anticancer
kinase targets, EGFR, FGFR, VEGFR, PDGFR, Src, and
Lck, were trained by using published non-dual inhibitors of
each kinase excluding dual-inhibitors of related kinase pairs.
Non-dual inhibitors of a kinase pair refer to compounds
known to inhibit one of the kinases but not both kinases.
Dual-inhibitors of a kinase pair refer to compounds known to
inhibit both kinases of a kinase pair. These SVMs were
combinatorially used for searching published dual-inhibitors
of the four kinase pairs EGFR-FGFR, VEGFR-Lck,
PDGFR-Src, and Src-Lck. We only evaluated dual-inhibitor
search performance because of the availability of sufficient
number of dual-inhibitors for conducting the tests and the
relatively lower computational load for developing virtual
screening models. SVMs were tested because of their good
performance and high speed in screening large compound
libraries (49) as well as our own experiences in developing
SVM virtual screening tools (50,51). SVM for searching
individual target and multi-target inhibitors is illustrated in
Figs. 6 and 7 respectively. The four selected kinase pairs are
frequently co-expressed or co-activated in various cancers
(32,52), and targeted by multi-target drugs with good anti-
cancer efficacies (10,11).

We used a rigorous testing method that assumes no explicit
knowledge of known multi-target agents. SVM of each individ-
ual kinase was developed by using 392∼1,303 known non-dual
inhibitors published in the literature and 63,846∼66,214 putative
non-inhibitors of EGFR, VEGFR, PDGFR, FGFR, Src and
Lck respectively (representative compounds in PubChem and
MDDR databases not known to inhibit each of these kinases
respectively) by using the algorithm and procedure described in
our earlier publications (50,51). The collective retrieval rate for
each kinase pair was estimated by using 56∼188 known dual-
inhibitors of EGFR-FGFR, VEGFR-Lck, PDGFR-Src, and
Src-Lck published in the literature, respectively. Target selec-
tivity with respect to a particular kinase pair was assessed by
using non-dual inhibitors of the kinase pair and the inhibitors of
other kinase pairs. The capability for searching large compound
libraries was evaluated by using 13.56 M PubChem, 168 K
MDDR, and 276∼2,893 MDDR compounds similar in struc-
tural and physicochemical properties to the known dual-kinase
inhibitors.

Virtual screening performance of combinatorial SVMs in
identifying dual-inhibitors of the four kinase pairs is summar-
ised in Table II. The dual-inhibitor retrieval rates are 40.9%
for EGFR-FGFR, 52.6% for VEGFR-Lck, 38.3% for
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PDGFR-Src, and 48.2% for Src-Lck, respectively. In screen-
ing 392∼1,303 non-dual inhibitors of each kinase pair,
combinatorial SVMs misidentified 10.1% of the non-dual
EGFR inhibitor and 8.7% the non-dual FGFR inhibitors for
EGFR-FGFR, 6.6% and 29.2% for VEGFR-Lck, 25.8% and
11.6% for PDGFR-Src, and 15.8% and 18.7% for Src-Lck,
respectively. Therefore, combinatorial SVMs show reason-
ably good capability for selectively identifying multi-target
agents without requiring explicit knowledge of multi-target
agents. There are two possible reasons for the misidentifica-
tion of a substantial percentage of non-dual inhibitors as dual-
inhibitors. First, SVMs were trained by non-dual inhibitors
only, which may not fully distinguish dual and non-dual
inhibitors. Second, some of the misidentified non-dual
inhibitors are probably true dual-inhibitors not yet exper-
imentally tested for specific multi-target activities.

Target selectivity was further tested by using combinato-
rial SVMs to screen the 2,781∼3,323 inhibitors of the four
kinases not in a kinase pair, 0.2∼3.4% of which were
misidentified as dual-inhibitors for EGFR-FGFR, 2.0∼12.7%
for VEGFR-Lck, 0.7∼7.7% for PDGFR-Src, and 1.0∼9.8%
for Src-Lck, respectively. Combinatorial SVMs appear to be
fairly selective in separating inhibitors of a specific kinase
pair from those of other kinases. Combinatorial SVMs also
showed low false-hit rates in predicting as dual-inhibitors
2,200∼4,817 (0.016∼0.036%) of the 13.56 M PubChem
compounds, 126∼175 (0.07∼0.104%) of the 168 K MDDR
compounds, and 21∼84 (2.9∼9.4%) of the 276∼2,893
MDDR compounds similar to the known dual-inhibitors. It
is further noted that 49.6∼61.9% of the 65∼103 SVM
identified MDDR compounds belong to the classes of
antineoplastic, tyrosine-specific protein kinase inhibitors,
and signal transduction inhibitors.

CONCLUDING REMARKS

Multi-target-based in-silico methods have been increas-
ingly explored and have shown promising potential as virtual
screening tools for identifying selective multi-target agents.
The capability of these methods may be further enhanced by
incorporating knowledge of newly discovered selective multi-
target agents from the current and future drug discovery
efforts (10,11), and by the improvement of virtual screening
methods (50,51,53–57). It is possible to introduce more
comprehensive elements of distinguished structural and
physicochemical features of selective multi-target agents or
multi-target activity and binding site profiles into the develop-
ment of more effective tools for the identification of selective
multi-target agents and active compounds against an individ-
ual target.
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